Admissible prediction in superpopulation models with random regression coefficients under matrix loss function
Li-Wen Xu and
Sheng-Hua Yu
Journal of Multivariate Analysis, 2012, vol. 103, issue 1, 68-76
Abstract:
Admissible prediction problems in finite populations with arbitrary rank under matrix loss function are investigated. For the general random effects linear model, we obtained the necessary and sufficient conditions for a linear predictor of the linearly predictable variable to be admissible in the two classes of homogeneous linear predictors and all linear predictors and the class that contains all predictors, respectively. Moreover, we prove that the best linear unbiased predictors (BLUPs) of the population total and the finite population regression coefficient are admissible under different assumptions of superpopulation models respectively.
Keywords: Finite; populations; Linear; predictors; Best; linear; unbiased; predictor; Admissibility; Random; coefficients (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X11001205
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:103:y:2012:i:1:p:68-76
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().