A note on the power superiority of the restricted likelihood ratio test
Jens Praestgaard
Journal of Multivariate Analysis, 2012, vol. 104, issue 1, 1-15
Abstract:
Let be a closed convex cone which contains a linear subspace . We investigate the restricted likelihood ratio test for the null and alternative hypotheses based on an n-dimensional, normally distributed random vector (X1,...,Xn) with unknown mean and known covariance matrix [Sigma]. We prove that if the true mean vector satisfies the alternative hypothesis HA, then the restricted likelihood ratio test is more powerful than the unrestricted test with larger alternative hypothesis [real]n. The proof uses isoperimetric inequalities for the uniform distribution on the n-dimensional sphere and for n-dimensional standard Gaussian measure.
Keywords: Order; restricted; inference; Convex; cone; Gaussian; isoperimetric; inequality (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X11000601
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:104:y:2012:i:1:p:1-15
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().