Jackknife-blockwise empirical likelihood methods under dependence
Rongmao Zhang,
Liang Peng and
Yongcheng Qi
Journal of Multivariate Analysis, 2012, vol. 104, issue 1, 56-72
Abstract:
Empirical likelihood for general estimating equations is a method for testing hypothesis or constructing confidence regions on parameters of interest. If the number of parameters of interest is smaller than that of estimating equations, a profile empirical likelihood has to be employed. In case of dependent data, a profile blockwise empirical likelihood method can be used. However, if too many nuisance parameters are involved, a computational difficulty in optimizing the profile empirical likelihood arises. Recently, Li et al. (2011) [9] proposed a jackknife empirical likelihood method to reduce the computation in the profile empirical likelihood methods for independent data. In this paper, we propose a jackknife-blockwise empirical likelihood method to overcome the computational burden in the profile blockwise empirical likelihood method for weakly dependent data.
Keywords: Confidence; region; Empirical; likelihood; General; estimating; equations; Jackknife; Weak; dependence (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X11001217
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:104:y:2012:i:1:p:56-72
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().