EconPapers    
Economics at your fingertips  
 

An adaptive estimation of MAVE

Qin Wang and Weixin Yao

Journal of Multivariate Analysis, 2012, vol. 104, issue 1, 88-100

Abstract: Minimum average variance estimation (MAVE, Xia et al. (2002) [29]) is an effective dimension reduction method. It requires no strong probabilistic assumptions on the predictors, and can consistently estimate the central mean subspace. It is applicable to a wide range of models, including time series. However, the least squares criterion used in MAVE will lose its efficiency when the error is not normally distributed. In this article, we propose an adaptive MAVE which can be adaptive to different error distributions. We show that the proposed estimate has the same convergence rate as the original MAVE. An EM algorithm is proposed to implement the new adaptive MAVE. Using both simulation studies and a real data analysis, we demonstrate the superior finite sample performance of the proposed approach over the existing least squares based MAVE when the error distribution is non-normal and the comparable performance when the error is normal.

Keywords: Sufficient; dimension; reduction; Central; mean; subspace; MAVE; Adaptive; estimation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X11001436
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:104:y:2012:i:1:p:88-100

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:104:y:2012:i:1:p:88-100