EconPapers    
Economics at your fingertips  
 

Multivariate versions of Bartlett’s formula

Nan Su and Robert Lund

Journal of Multivariate Analysis, 2012, vol. 105, issue 1, 18-31

Abstract: This paper quantifies the form of the asymptotic covariance matrix of the sample autocovariances in a multivariate stationary time series—the classic Bartlett formula. Such quantification is useful in many statistical inferences involving autocovariances. While joint asymptotic normality of the sample autocovariances is well-known in univariate settings, explicit forms of the asymptotic covariances have not been investigated in the general multivariate non-Gaussian case. We fill this gap by providing such an analysis, bookkeeping all skewness terms. Additionally, following a recent univariate paper by Francq and Zakoian, we consider linear processes driven by non-independent errors, a feature that permits consideration of multivariate GARCH processes.

Keywords: Asymptotic normality; Multivariate stationarity; Sample autocorrelations (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X11001679
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:105:y:2012:i:1:p:18-31

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2011.08.008

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:105:y:2012:i:1:p:18-31