On the convergence of row-modification algorithm for matrix projections
Xiaomi Hu,
Jürgen Hansohm,
Linda Hoffmann and
Ye Emma Zohner
Journal of Multivariate Analysis, 2012, vol. 105, issue 1, 216-221
Abstract:
This paper proposes an algorithm for matrix minimum-distance projection, with respect to a metric induced from an inner product that is the sum of inner products of column vectors, onto the collection of all matrices with their rows restricted in closed convex sets. This algorithm produces a sequence of matrices by modifying a matrix row by row, over and over again. It is shown that the sequence is convergent, and it converges to the desired projection. The implementation of the algorithm for multivariate isotonic regressions and numerical examples are also presented in the paper.
Keywords: Algorithm; Closed and convex set; Matrix projection; Multivariate isotonic regression (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X1100193X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:105:y:2012:i:1:p:216-221
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2011.09.005
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().