An adaptive estimator of the memory parameter and the goodness-of-fit test using a multidimensional increment ratio statistic
Jean-Marc Bardet and
Béchir Dola
Journal of Multivariate Analysis, 2012, vol. 105, issue 1, 222-240
Abstract:
The increment ratio (IR) statistic was first defined and studied in Surgailis et al. (2007) [19] for estimating the memory parameter either of a stationary or an increment stationary Gaussian process. Here three extensions are proposed in the case of stationary processes. First, a multidimensional central limit theorem is established for a vector composed by several IR statistics. Second, a goodness-of-fit χ2-type test can be deduced from this theorem. Finally, this theorem allows to construct adaptive versions of the estimator and the test which are studied in a general semiparametric frame. The adaptive estimator of the long-memory parameter is proved to follow an oracle property. Simulations attest to the interesting accuracies and robustness of the estimator and the test, even in the non Gaussian case.
Keywords: Long-memory Gaussian processes; Goodness-of-fit test; Estimation of the memory parameter; Minimax adaptive estimator (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X11001916
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:105:y:2012:i:1:p:222-240
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2011.09.003
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().