Edgeworth expansions for GEL estimators
Gubhinder Kundhi and
Paul Rilstone
Journal of Multivariate Analysis, 2012, vol. 106, issue C, 118-146
Abstract:
Finite sample approximations for the distribution functions of Generalized Empirical Likelihood (GEL) are derived using Edgeworth expansions. The analytical results obtained are shown to apply to most of the common extremum estimators used in applied work in an i.i.d. sampling context. The GEL estimators considered include the Continuous Updating, Empirical Likelihood and Exponential Tilting estimators. These estimators are popular alternatives to Generalized Method of Moment (GMM) estimators and their finite sample properties are examined. In a Monte Carlo Experiment, higher order analytical corrections provided by Edgeworth approximations work well in comparison to first order approximations and improve inferences in finite samples.
Keywords: Higher order asymptotics; Edgeworth expansions; Generalized Empirical Likelihood; Generalized Method of Moments (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X11002107
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:106:y:2012:i:c:p:118-146
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2011.11.005
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().