EconPapers    
Economics at your fingertips  
 

Local Walsh-average regression

Long Feng, Changliang Zou and Zhaojun Wang

Journal of Multivariate Analysis, 2012, vol. 106, issue C, 36-48

Abstract: Local polynomial regression is widely used for nonparametric regression. However, the efficiency of least squares (LS) based methods is adversely affected by outlying observations and heavy tailed distributions. On the other hand, the least absolute deviation (LAD) estimator is more robust, but may be inefficient for many distributions of interest. Kai et al. (2010) [13] propose a nonparametric regression technique called local composite quantile regression (LCQR) smoothing to improve local polynomial regression further. However, the performance of LCQR depends on the choice of the number of quantiles to combine, a meta parameter which plays a vital role in balancing the performance of LS and LAD based methods. To overcome this issue, we propose a novel method termed the local Walsh-average regression (LWAR) estimator by minimizing a locally Walsh-average based loss function. Under the same assumptions in Kai et al. (2010) [13], we theoretically show that the proposed estimator is highly efficient across a wide spectrum of distributions. Its asymptotic relative efficiency with respect to the LS based method is closely related to that of the signed-rank Wilcoxon test in comparison with the t-test. Both of the theoretical and numerical results demonstrate that the performance of the new approach and LCQR is at least comparable in estimating the nonparametric regression function or its derivatives and in some cases the new approach performs better than the LCQR with commonly recommended number of quantiles, especially for estimating the regression function.

Keywords: Asymptotic efficiency; Local composite quantile estimator; Local polynomial regression; Robust nonparametric regression; Walsh-average regression (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X1100217X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:106:y:2012:i:c:p:36-48

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2011.12.003

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:106:y:2012:i:c:p:36-48