EconPapers    
Economics at your fingertips  
 

A conditional independence test for dependent data based on maximal conditional correlation

Yu-Hsiang Cheng and Tzee-Ming Huang

Journal of Multivariate Analysis, 2012, vol. 107, issue C, 210-226

Abstract: In Huang (2010) [8], a test of conditional independence based on maximal nonlinear conditional correlation is proposed and the asymptotic distribution for the test statistic under conditional independence is established for IID data. In this paper, we derive the asymptotic distribution for the test statistic under conditional independence for α-mixing data. The results of simulation show that the test performs reasonably well for dependent data. We also apply the test to stock index data to test Granger noncausality between returns and trading volume.

Keywords: Conditional independence test; α-mixing; Maximal conditional nonlinear correlation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12000188
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:107:y:2012:i:c:p:210-226

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2012.01.017

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:107:y:2012:i:c:p:210-226