EconPapers    
Economics at your fingertips  
 

Phase transition in limiting distributions of coherence of high-dimensional random matrices

T. Tony Cai and Tiefeng Jiang

Journal of Multivariate Analysis, 2012, vol. 107, issue C, 24-39

Abstract: The coherence of a random matrix, which is defined to be the largest magnitude of the Pearson correlation coefficients between the columns of the random matrix, is an important quantity for a wide range of applications including high-dimensional statistics and signal processing. Inspired by these applications, this paper studies the limiting laws of the coherence of n×p random matrices for a full range of the dimension p with a special focus on the ultra high-dimensional setting. Assuming the columns of the random matrix are independent random vectors with a common spherical distribution, we give a complete characterization of the behavior of the limiting distributions of the coherence. More specifically, the limiting distributions of the coherence are derived separately for three regimes: 1nlogp→0, 1nlogp→β∈(0,∞), and 1nlogp→∞. The results show that the limiting behavior of the coherence differs significantly in different regimes and exhibits interesting phase transition phenomena as the dimension p grows as a function of n. Applications to statistics and compressed sensing in the ultra high-dimensional setting are also discussed.

Keywords: Coherence; Correlation coefficient; Limiting distribution; Maximum; Phase transition; Random matrix; Sample correlation matrix; Chen–Stein method (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X11002132
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:107:y:2012:i:c:p:24-39

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2011.11.008

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:107:y:2012:i:c:p:24-39