Empirical processes for infinite variance autoregressive models
Chafik Bouhaddioui and
Kilani Ghoudi
Journal of Multivariate Analysis, 2012, vol. 107, issue C, 319-335
Abstract:
The paper proposes new procedures for diagnostic checking of fitted models under the assumption of infinite-variance errors which are in the domain of attraction of a stable law. These procedures are functional of residual-based empirical processes. First, the asymptotic distributions of the empirical processes based on residuals are derived. Then two important applications in time series diagnostics are discussed. A goodness-of-fit test is developed using a functional of the empirical process based on residuals. Tests of independence of innovations are also considered. The finite-sample behavior of these tests are studied by simulation and comparison with the classical Portmanteau tests for ARMA models with infinite-variance developed recently by Lin and McLeod (2008) [25] is provided.
Keywords: Empirical process; Stable distributions; Infinite variance; Autoregressive models; Independence tests; Goodness-of-fit tests; Portmanteau statistics (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X1200019X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:107:y:2012:i:c:p:319-335
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2012.01.018
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().