Quantiles for finite and infinite dimensional data
Ricardo Fraiman and
Beatriz Pateiro-López
Journal of Multivariate Analysis, 2012, vol. 108, issue C, 1-14
Abstract:
A new projection-based definition of quantiles in a multivariate setting is proposed. This approach extends in a natural way to infinite-dimensional Hilbert spaces. The directional quantiles we define are shown to satisfy desirable properties of equivariance and, from an interpretation point of view, the resulting quantile contours provide valuable information when plotting them. Sample quantiles estimating the corresponding population quantiles are defined and consistency results are obtained. The new concept of principal quantile directions, closely related in some situations to principal component analysis, is found specially attractive for reducing the dimensionality and visualizing important features of functional data. Asymptotic properties of the empirical version of principal quantile directions are also obtained. Based on these ideas, a simple definition of robust principal components for finite and infinite-dimensional spaces is also proposed. The presented methodology is illustrated with examples throughout the paper.
Keywords: Quantiles for functional data; Principal quantile directions; Hilbert space; High dimensional multivariate data (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12000176
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:108:y:2012:i:c:p:1-14
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2012.01.016
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().