Estimation of parameters in the growth curve model via an outer product least squares approach for covariance
Jianhua Hu,
Fuxiang Liu and
S. Ejaz Ahmed
Journal of Multivariate Analysis, 2012, vol. 108, issue C, 53-66
Abstract:
In this paper, we propose a framework of outer product least squares for covariance (COPLS) to directly estimate covariance in the growth curve model based on an analogy, between the outer product of a data vector and covariance of a random vector, and the ordinary least squares technique. The COPLS estimator of covariance has an explicit expression and is shown to have the following properties: (1) following a linear transformation of two independent Wishart distribution for a normal error matrix; (2) having asymptotic normality for a nonnormal error matrix; and (3) having unbiasedness and invariance under a linear transformation group. And, a corresponding two-stage generalized least squares (GLS) estimator for the regression coefficient matrix in the model is obtained and its asymptotic normality is investigated. Simulation studies confirm that the COPLS estimator and the two-stage GLS estimator of the regression coefficient matrix are satisfying competitors with some evident merits to the existing maximum likelihood estimator in finite samples.
Keywords: Estimation; Growth curve model; Outer product; Outer product least squares for covariance; COPLS estimator; Two-stage generalized least squares (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12000413
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:108:y:2012:i:c:p:53-66
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2012.02.007
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().