Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions
Samuel Karlin and
Yosef Rinott
Journal of Multivariate Analysis, 1980, vol. 10, issue 4, 467-498
Abstract:
A function f(x) defined on = 1 - 2 - ... - n where each i is totally ordered satisfying f(x [logical or] y) f(x [logical and] y) >= f(x) f(y), where the lattice operations [logical or] and [logical and] refer to the usual ordering on , is said to be multivariate totally positive of order 2 (MTP2). A random vector Z = (Z1, Z2,..., Zn) of n-real components is MTP2 if its density is MTP2. Classes of examples include independent random variables, absolute value multinormal whose covariance matrix [Sigma] satisfies -D[Sigma]-1D with nonnegative off-diagonal elements for some diagonal matrix D, characteristic roots of random Wishart matrices, multivariate logistic, gamma and F distributions, and others. Composition and marginal operations preserve the MTP2 properties. The MTP2 property facilitate the characterization of bounds for confidence sets, the calculation of coverage probabilities, securing estimates of multivariate ranking, in establishing a hierarchy of correlation inequalities, and in studying monotone Markov processes. Extensions on the theory of MTP2 kernels are presented and amplified by a wide variety of applications.
Date: 1980
References: Add references at CitEc
Citations: View citations in EconPapers (142)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(80)90065-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:10:y:1980:i:4:p:467-498
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().