Likelihood inference for Archimedean copulas in high dimensions under known margins
Marius Hofert,
Martin Mächler and
Alexander J. McNeil
Journal of Multivariate Analysis, 2012, vol. 110, issue C, 133-150
Abstract:
Explicit functional forms for the generator derivatives of well-known one-parameter Archimedean copulas are derived. These derivatives are essential for likelihood inference as they appear in the copula density, conditional distribution functions, and the Kendall distribution function. They are also required for several asymmetric extensions of Archimedean copulas such as Khoudraji-transformed Archimedean copulas. Availability of the generator derivatives in a form that permits fast and accurate computation makes maximum-likelihood estimation for Archimedean copulas feasible, even in large dimensions. It is shown, by large scale simulation of the performance of maximum likelihood estimators under known margins, that the root mean squared error actually decreases with both dimension and sample size at a similar rate. Confidence intervals for the parameter vector are derived under known margins. Moreover, extensions to multi-parameter Archimedean families are given. All presented methods are implemented in the R package nacopula and can thus be studied in detail.
Keywords: Archimedean copulas; Maximum-likelihood estimation; Confidence intervals; Multi-parameter families (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12000607
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:110:y:2012:i:c:p:133-150
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2012.02.019
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().