The multivariate Piecing-Together approach revisited
Stefan Aulbach,
Michael Falk and
Martin Hofmann
Journal of Multivariate Analysis, 2012, vol. 110, issue C, 161-170
Abstract:
The univariate Piecing-Together approach (PT) fits a univariate generalized Pareto distribution (GPD) to the upper tail of a given distribution function in a continuous manner. A multivariate extension was established by Aulbach et al. (in press) [2]: the upper tail of a given copula C is cut off and replaced by a multivariate GPD-copula in a continuous manner, yielding a new copula called a PT-copula. Then each margin of this PT-copula is transformed by a given univariate distribution function. This provides a multivariate distribution function with prescribed margins, whose copula is a GPD-copula that coincides in its central part with C. In addition to Aulbach et al. (in press) [2], we achieve in the present paper an exact representation of the PT-copula’s upper tail, giving further insight into the multivariate PT approach. A variant based on the empirical copula is also added. Furthermore our findings enable us to establish a functional PT version as well.
Keywords: Copula; Copula process; D-norm; Domain of multivariate attraction; Empirical copula; GPD-copula; Max-stable process; Multivariate extreme value distribution; Multivariate generalized Pareto distribution; Peaks-over-threshold; Piecing-Together approach (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X1200036X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:110:y:2012:i:c:p:161-170
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2012.02.002
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().