EconPapers    
Economics at your fingertips  
 

Some aspects of modeling dependence in copula-based Markov chains

Martial Longla and Magda Peligrad

Journal of Multivariate Analysis, 2012, vol. 111, issue C, 234-240

Abstract: Dependence coefficients have been widely studied for Markov processes defined by a set of transition probabilities and an initial distribution. This work clarifies some aspects of the theory of dependence structure of Markov chains generated by copulas that are useful in time series econometrics and other applied fields. The main aim of this paper is to clarify the relationship between the notions of geometric ergodicity and geometric ρ-mixing; namely, to point out that for a large number of well known copulas, such as Clayton, Gumbel or Student, these notions are equivalent. Some of the results published in the last years appear to be redundant if one takes into account this fact. We apply this equivalence to show that any mixture of Clayton, Gumbel or Student copulas generates both geometrically ergodic and geometric ρ-mixing stationary Markov chains, answering in this way an open question in the literature. We shall also point out that a sufficient condition for ρ-mixing, used in the literature, actually implies Doeblin recurrence.

Keywords: Markov chains; Copula; Mixing conditions; Reversible processes (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12000334
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:111:y:2012:i:c:p:234-240

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2012.01.025

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:111:y:2012:i:c:p:234-240