Asymptotic normality of posterior distributions for generalized linear mixed models
Hossein Baghishani and
Mohsen Mohammadzadeh
Journal of Multivariate Analysis, 2012, vol. 111, issue C, 66-77
Abstract:
Bayesian inference methods are used extensively in the analysis of Generalized Linear Mixed Models (GLMMs), but it may be difficult to handle the posterior distributions analytically. In this paper, we establish the asymptotic normality of the joint posterior distribution of the parameters and the random effects in a GLMM by using Stein’s Identity. We also show that while incorrect assumptions on the random effects can lead to substantial bias in the estimates of the parameters, the assumed model for the random effects, under some regularity conditions, does not affect the asymptotic normality of the joint posterior distribution. This motivates the use of the approximate normal distributions for sensitivity analysis of the random effects distribution. We additionally illustrate that the approximate normal distribution performs reasonably using both real and simulated data. This creates a primary alternative to Markov Chain Monte Carlo (MCMC) sampling and avoids a wide range of problems for MCMC algorithms in terms of convergence and computational time.
Keywords: Asymptotic normality; Clustered data; Generalized linear mixed models; Misspecification; Posterior distribution; Stein’s Identity (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12001297
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:111:y:2012:i:c:p:66-77
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2012.05.003
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().