Geometric ergodicity of the Gibbs sampler for Bayesian quantile regression
Kshitij Khare and
James P. Hobert
Journal of Multivariate Analysis, 2012, vol. 112, issue C, 108-116
Abstract:
Consider the quantile regression model Y=Xβ+σϵ where the components of ϵ are i.i.d. errors from the asymmetric Laplace distribution with rth quantile equal to 0, where r∈(0,1) is fixed. Kozumi and Kobayashi (2011) [9] introduced a Gibbs sampler that can be used to explore the intractable posterior density that results when the quantile regression likelihood is combined with the usual normal/inverse gamma prior for (β,σ). In this paper, the Markov chain underlying Kozumi and Kobayashi’s (2011) [9] algorithm is shown to converge at a geometric rate. No assumptions are made about the dimension of X, so the result still holds in the “large p, small n” case.
Keywords: Convergence rate; Geometric drift condition; Markov chain; Monte Carlo (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12001303
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:112:y:2012:i:c:p:108-116
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2012.05.004
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().