Estimation of generalized linear latent variable models via fully exponential Laplace approximation
Silvia Bianconcini () and
Silvia Cagnone
Journal of Multivariate Analysis, 2012, vol. 112, issue C, 183-193
Abstract:
Latent variable models represent a useful tool in different fields of research in which the constructs of interest are not directly observable. In such models, problems related to the integration of the likelihood function can arise since analytical solutions do not exist. Numerical approximations, like the widely used Gauss–Hermite (GH) quadrature, are generally applied to solve these problems. However, GH becomes unfeasible as the number of latent variables increases. Thus, alternative solutions have to be found. In this paper, we propose an extended version of the Laplace method for approximating the integrals, known as fully exponential Laplace approximation. It is computational feasible also in presence of many latent variables, and it is more accurate than the classical Laplace approximation. The method is developed within the Generalized Linear Latent Variable Models (GLLVM) framework.
Keywords: Laplace approximation; Adaptive Gauss–Hermite; EM algorithm; Ordinal data (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12001510
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:112:y:2012:i:c:p:183-193
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2012.06.005
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().