Dimension reduction for the conditional kth moment via central solution space
Yuexiao Dong and
Zhou Yu
Journal of Multivariate Analysis, 2012, vol. 112, issue C, 207-218
Abstract:
Sufficient dimension reduction aims at finding transformations of predictor X without losing any regression information of Y versus X. If we are only interested in the information contained in the mean function or the kth moment function of Y given X, estimation of the central mean space or the central kth moment space becomes our focus. However, existing estimators for the central mean space and the central kth moment space require a linearity assumption on the predictor distribution. In this paper, we relax this stringent assumption via the notion of central kth moment solution space. Simulation studies and analysis of the Massachusetts college data set confirm that our proposed estimators of the central kth moment space outperform existing methods for non-elliptically distributed predictors.
Keywords: Central kth moment space; Central solution space; Dimension reduction space; Non-elliptical distribution (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12001479
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:112:y:2012:i:c:p:207-218
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2012.06.001
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().