EconPapers    
Economics at your fingertips  
 

A criterion-based model comparison statistic for structural equation models with heterogeneous data

Yun-Xian Li, Yutaka Kano, Jun-Hao Pan and Xin-Yuan Song

Journal of Multivariate Analysis, 2012, vol. 112, issue C, 92-107

Abstract: Heterogeneous data are common in social, educational, medical and behavioral sciences. Recently, finite mixture structural equation models (SEMs) and two-level SEMs have been respectively proposed to analyze different kinds of heterogeneous data. Due to the complexity of these two kinds of SEMs, model comparison is difficult. For instance, the computational burden in evaluating the Bayes factor is heavy, and the Deviance Information Criterion may not be appropriate for mixture SEMs. In this paper, a Bayesian criterion-based method called the Lv measure, which involves a component related to the variability of the prediction and a component related to the discrepancy between the data and the prediction, is proposed. Moreover, the calibration distribution is introduced for formal comparison of competing models. Two simulation studies, and two applications based on real data sets are presented to illustrate the satisfactory performance of the Lv measure in model comparison.

Keywords: Bayesian approach; Latent variables; Lv measure; Calibration distribution; MCMC algorithm (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12001364
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:112:y:2012:i:c:p:92-107

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2012.05.010

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:112:y:2012:i:c:p:92-107