The multilinear normal distribution: Introduction and some basic properties
Martin Ohlson,
M. Rauf Ahmad and
Dietrich von Rosen
Journal of Multivariate Analysis, 2013, vol. 113, issue C, 37-47
Abstract:
In this paper, the multilinear normal distribution is introduced as an extension of the matrix-variate normal distribution. Basic properties such as marginal and conditional distributions, moments, and the characteristic function, are also presented. A trilinear example is used to explain the general contents at a simpler level. The estimation of parameters using a flip-flop algorithm is also briefly discussed.
Keywords: Flip-flop algorithm; Matrix normal distribution; Marginal and conditional distributions; Maximum likelihood estimators; Moments; Tensor product (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X11001047
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:113:y:2013:i:c:p:37-47
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2011.05.015
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().