A revisit to efficient forecasting in linear regression models
Shalabh,
Journal of Multivariate Analysis, 2013, vol. 114, issue C, 161-170
Abstract:
This paper deals with the improved forecasts for the values of the study variable in linear regression models utilizing the minimum risk approach. It considers the simultaneous forecasting of actual and average values of the study variable and reports the performance properties of the classical unbiased forecasts and two biased forecasts with respect to the criteria of the bias vector, mean squared error matrix and forecast risk, employing the small disturbance asymptotic theory.
Keywords: Linear regression model; Simultaneous forecasting; Least squares estimator; Stein-rule estimator; Small disturbance asymptotic theory; Minimum risk approach (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X1200190X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:114:y:2013:i:c:p:161-170
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2012.07.017
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().