Gaussian fluctuations for sample covariance matrices with dependent data
Olga Friesen,
Matthias Löwe and
Michael Stolz
Journal of Multivariate Analysis, 2013, vol. 114, issue C, 270-287
Abstract:
It is known (Hofmann-Credner and Stolz (2008) [4]) that the convergence of the mean empirical spectral distribution of a sample covariance matrix Wn=1/nYnYnt to the Marčenko–Pastur law remains unaffected if the rows and columns of Yn exhibit some dependence, where only the growth of the number of dependent entries, but not the joint distribution of dependent entries needs to be controlled. In this paper we show that the well-known CLT for traces of powers of Wn also extends to the dependent case.
Keywords: Random matrices; Sample covariance matrices; Marčenko–Pastur law; Dependent random variables (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12002023
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:114:y:2013:i:c:p:270-287
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2012.08.004
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().