EconPapers    
Economics at your fingertips  
 

Extremal dependence of copulas: A tail density approach

Haijun Li and Peiling Wu

Journal of Multivariate Analysis, 2013, vol. 114, issue C, 99-111

Abstract: The extremal dependence of a random vector describes the tail behaviors of joint probabilities of the random vector with respect to that of its margins, and has been often studied by using the tail dependence function of its copula. A tail density approach is introduced in this paper to analyze extremal dependence of the copulas that are specified only by densities. The relation between the copula tail densities and regularly varying densities are established, and the tail densities of Archimedean and t copulas are derived explicitly. The tail density approach becomes especially effective for extremal dependence analysis on a vine copula, for which the tail density can be written recursively in the product form of tail densities of bivariate baseline copulas and densities of bivariate linking copulas.

Keywords: Tail dependence; Regularly varying density; Multivariate extremes; Tail risk; Vine copula (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X1200173X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:114:y:2013:i:c:p:99-111

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2012.07.005

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:114:y:2013:i:c:p:99-111