EconPapers    
Economics at your fingertips  
 

Comparison of binary discrimination methods for high dimension low sample size data

A. Bolivar-Cime and J.S. Marron

Journal of Multivariate Analysis, 2013, vol. 115, issue C, 108-121

Abstract: A comparison of some binary discrimination methods is done in the high dimension low sample size context for Gaussian data with common diagonal covariance matrix. In particular we obtain results about the asymptotic behavior of the methods Support Vector Machine, Mean Difference (i.e. Centroid Rule), Distance Weighted Discrimination, Maximal Data Piling and Naive Bayes when the dimension d of the data sets tends to infinity and the sample sizes of the classes are fixed. It is concluded that, under appropriate conditions, the first four methods are asymptotically equivalent, but the Naive Bayes method can have a different asymptotic behavior when d tends to infinity.

Keywords: Asymptotic analysis; Binary discrimination; High dimensional data; Machine learning (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12002242
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:115:y:2013:i:c:p:108-121

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2012.10.001

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:115:y:2013:i:c:p:108-121