EconPapers    
Economics at your fingertips  
 

Nonparametric tests for change-point detection à la Gombay and Horváth

Mark Holmes, Ivan Kojadinovic and Jean-François Quessy

Journal of Multivariate Analysis, 2013, vol. 115, issue C, 16-32

Abstract: The nonparametric test for change-point detection proposed by Gombay and Horváth is revisited and extended in the broader setting of empirical process theory. The resulting testing procedure for potentially multivariate observations is based on a sequential generalization of the functional multiplier central limit theorem and on modifications of Gombay and Horváth’s seminal approach that appears to improve the finite-sample behavior of the tests. A large number of candidate test statistics based on processes indexed by lower-left orthants and half-spaces are considered and their performance is studied through extensive Monte Carlo experiments involving univariate, bivariate and trivariate data sets. Finally, practical recommendations are provided and the tests are illustrated on trivariate hydrological data.

Keywords: Half-spaces; Lower-left orthants; Multiplier central limit theorem; Multivariate independent observations; Partial-sum process (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12002278
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:115:y:2013:i:c:p:16-32

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2012.10.004

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:115:y:2013:i:c:p:16-32