Tests for multivariate analysis of variance in high dimension under non-normality
Muni S. Srivastava and
Tatsuya Kubokawa
Journal of Multivariate Analysis, 2013, vol. 115, issue C, 204-216
Abstract:
In this article, we consider the problem of testing the equality of mean vectors of dimension p of several groups with a common unknown non-singular covariance matrix Σ, based on N independent observation vectors where N may be less than the dimension p. This problem, known in the literature as the multivariate analysis of variance (MANOVA) in high-dimension has recently been considered in the statistical literature by Srivastava and Fujikoshi (2006) [8], Srivastava (2007) [5] and Schott (2007) [3]. All these tests are not invariant under the change of units of measurements. On the lines of Srivastava and Du (2008) [7] and Srivastava (2009) [6], we propose a test that has the above invariance property. The null and the non-null distributions are derived under the assumption that (N,p)→∞ and N may be less than p and the observation vectors follow a general non-normal model.
Keywords: Asymptotic distributions; High dimension; MANOVA; Multivariate linear model; Non-normal model; Sample size smaller than dimension (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12002424
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:115:y:2013:i:c:p:204-216
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2012.10.011
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().