Consistency of sparse PCA in High Dimension, Low Sample Size contexts
Dan Shen,
Haipeng Shen and
J.S. Marron
Journal of Multivariate Analysis, 2013, vol. 115, issue C, 317-333
Abstract:
Sparse Principal Component Analysis (PCA) methods are efficient tools to reduce the dimension (or number of variables) of complex data. Sparse principal components (PCs) are easier to interpret than conventional PCs, because most loadings are zero. We study the asymptotic properties of these sparse PC directions for scenarios with fixed sample size and increasing dimension (i.e. High Dimension, Low Sample Size (HDLSS)). We consider the previously studied single spike covariance model and assume in addition that the maximal eigenvector is sparse. We extend the existing HDLSS asymptotic consistency and strong inconsistency results of conventional PCA in an entirely new direction. We find a large set of sparsity assumptions under which sparse PCA is still consistent even when conventional PCA is strongly inconsistent. The consistency of sparse PCA is characterized along with rates of convergence. Furthermore, we clearly identify the mathematical boundaries of the sparse PCA consistency, by showing strong inconsistency for an oracle version of sparse PCA beyond the consistent region, as well as its inconsistency on the boundaries of the consistent region. Simulation studies are performed to validate the asymptotic results in finite samples.
Keywords: Sparse PCA; High dimension; Low sample size; Consistency (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12002308
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:115:y:2013:i:c:p:317-333
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2012.10.007
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().