Estimation of the conditional distribution of a multivariate variable given that one of its components is large: Additional constraints for the Heffernan and Tawn model
Caroline Keef,
Ioannis Papastathopoulos and
Jonathan A. Tawn
Journal of Multivariate Analysis, 2013, vol. 115, issue C, 396-404
Abstract:
A number of different approaches to study multivariate extremes have been developed. Arguably the most useful and flexible is the theory for the distribution of a vector variable given that one of its components is large. We build on the conditional approach of Heffernan and Tawn (2004) [13] for estimating this type of multivariate extreme property. Specifically we propose additional constraints for, and slight changes in, their model formulation. These changes in the method are aimed at overcoming complications that have been experienced with using the approach in terms of their modelling of negatively associated variables, parameter identifiability problems and drawing conditional inferences which are inconsistent with the marginal distributions. The benefits of the methods are illustrated using river flow data from two tributaries of the River Thames in the UK.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12002436
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:115:y:2013:i:c:p:396-404
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2012.10.012
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().