EconPapers    
Economics at your fingertips  
 

A frequency domain bootstrap for Whittle estimation under long-range dependence

Young Min Kim and Daniel J. Nordman

Journal of Multivariate Analysis, 2013, vol. 115, issue C, 405-420

Abstract: Whittle estimation is a common technique for fitting parametric spectral density functions to time series, in an effort to model the underlying covariance structure. However, Whittle estimators from long-range dependent processes can exhibit slow convergence to their Gaussian limit law so that calibrating confidence intervals with normal approximations may perform poorly. As a remedy, we study a frequency domain bootstrap (FDB) for approximating the distribution of Whittle estimators. The method provides valid distribution estimation for a broad class of stationary, long-range (or short-range) dependent linear processes, without stringent assumptions on the distribution of the underlying process. A large simulation study shows that the FDB approximations often improve normal approximations for setting confidence intervals for Whittle parameters in spectral models with strong dependence.

Keywords: FARIMA; Interval estimation; Long memory; Spectral density; Periodogram (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12002497
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:115:y:2013:i:c:p:405-420

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2012.10.018

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:115:y:2013:i:c:p:405-420