Asymptotic expansion and estimation of EPMC for linear classification rules in high dimension
Tatsuya Kubokawa,
Masashi Hyodo and
Muni S. Srivastava
Journal of Multivariate Analysis, 2013, vol. 115, issue C, 496-515
Abstract:
The problem of classifying a new observation vector into one of the two known groups distributed as multivariate normal with common covariance matrix is considered. In this paper, we handle the situation that the dimension, p, of the observation vectors is less than the total number, N, of observation vectors from the two groups, but both p and N tend to infinity with the same order. Since the inverse of the sample covariance matrix is close to an ill condition in this situation, it may be better to replace it with the inverse of the ridge-type estimator of the covariance matrix in the linear discriminant analysis (LDA). The resulting rule is called the ridge-type linear discriminant analysis (RLDA). The second-order expansion of the expected probability of misclassification (EPMC) for RLDA is derived, and the second-order unbiased estimator of EMPC is given. These results not only provide the corresponding conclusions for LDA, but also clarify the condition that RLDA improves on LDA in terms of EPMC. Finally, the performances of the second-order approximation and the unbiased estimator are investigated by simulation.
Keywords: High dimension; Inverted Wishart distribution; Linear discriminant analysis; Misclassification error; Multivariate normal; Ridge-type estimation; Second-order approximation; Wishart identity (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12002606
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:115:y:2013:i:c:p:496-515
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2012.11.001
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().