Optimal transformation: A new approach for covering the central subspace
François Portier and
Bernard Delyon
Journal of Multivariate Analysis, 2013, vol. 115, issue C, 84-107
Abstract:
This paper studies a general family of methods for sufficient dimension reduction (SDR) called the test function (TF), based on the introduction of a nonlinear transformation of the response. By considering order 1 and 2 conditional moments of the predictors given the response, we distinguish two classes of methods. The optimal members of each class are calculated with respect to the asymptotic mean squared error between the central subspace (CS) and its estimate. Moreover the theoretical background of TF is developed under weaker conditions than the existing methods. Accordingly, simulations confirm that the resulting methods are highly accurate.
Keywords: Inverse regression; Slicing estimation; Sufficient dimension reduction; Central subspace (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12002151
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:115:y:2013:i:c:p:84-107
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2012.09.001
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().