Information based model selection criteria for generalized linear mixed models with unknown variance component parameters
Dalei Yu,
Xinyu Zhang and
Kelvin K.W. Yau
Journal of Multivariate Analysis, 2013, vol. 116, issue C, 245-262
Abstract:
This paper derives the corrected conditional Akaike information criteria for generalized linear mixed models by analytic approximation and parametric bootstrap. The sampling variation of both fixed effects and variance component parameter estimators are accommodated in the bias correction term. Simulation shows that the proposed corrected criteria provide good approximation to the true conditional Akaike information and demonstrates promising model selection results. The use of the criteria is demonstrated in the analysis of the chronic asthmatic patients’ data.
Keywords: Conditional Akaike information; Model selection; Parametric bootstrap; Variance component (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12002813
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:116:y:2013:i:c:p:245-262
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2012.12.005
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().