Model-based principal components of correlation matrices
Robert J. Boik
Journal of Multivariate Analysis, 2013, vol. 116, issue C, 310-331
Abstract:
A model for principal components of correlation matrices is proposed. The model satisfies the correlation constraint (i.e., unit valued diagonal elements) as well as optional constraints on eigenvalues and/or eigenvectors. The model yields simplified principal components that retain both orthogonality and variance maximization properties. Inference procedures for eigenvalues, eigenvectors, and loadings on rotated or raw principal components are given. Multivariate normality is not required. A major issue in the modeling process is that the eigen-structure of the population correlation matrix can induce rank deficiencies in the submatrix of the constraint Jacobian matrix that is associated with the correlation constraint. This rank deficiency is a property of the population constraint Jacobian matrix; it is not necessarily a property of the sample Jacobian matrix evaluated at the solution to the estimating equation. Furthermore, if degenerate constraints are eliminated, then the fitted correlation matrix need not satisfy the correlation constraint. Procedures are proposed for detecting rank deficiencies, eliminating degenerate constraints, and constructing auxiliary constraints that ensure that the correlation constraint is satisfied. The procedures are illustrated on two real data sets.
Keywords: Bartlett correction; Confidence intervals; Discrepancy function; Eigenvalues; Eigenvectors; Eigenspaces; Implicit functions; Inference; Hypothesis tests; Nonregular constraints; Orthogonal matrices; Rotation of components (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X1200276X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:116:y:2013:i:c:p:310-331
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2012.11.017
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().