EconPapers    
Economics at your fingertips  
 

Asymptotic distributions of some test criteria for the mean vector with fewer observations than the dimension

Shota Katayama, Yutaka Kano and Muni S. Srivastava

Journal of Multivariate Analysis, 2013, vol. 116, issue C, 410-421

Abstract: The problem of hypothesis testing concerning the mean vector for high dimensional data has been investigated by many authors. They have proposed several test criteria and obtained their asymptotic distributions, under somewhat restrictive conditions, when both the sample size and the dimension tend to infinity. Indeed, the conditions used by these authors exclude a typical situation where the population covariance matrix has spiked eigenvalues, as for instance, the population covariance matrix with the compound symmetry structure (the variances are the same; the covariances are the same). In this paper, we relax their conditions to include such important cases, obtaining rather non-standard asymptotic distributions which are the convolution of normal and chi-squared distributions for the population covariance matrix with moderate spiked eigenvalues, and obtaining the asymptotic distributions in the form of convolutions of chi-square distributions for the population covariance matrix with quite spiked eigenvalues.

Keywords: Hypothesis testing; High-dimensional data; Multivariate normal distribution; Asymptotic theory (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X13000092
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:116:y:2013:i:c:p:410-421

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2013.01.008

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:116:y:2013:i:c:p:410-421