Goodness-of-fit test for stochastic volatility models
Liang-Ching Lin,
Sangyeol Lee and
Meihui Guo
Journal of Multivariate Analysis, 2013, vol. 116, issue C, 473-498
Abstract:
In this paper, we propose a goodness of fit test for continuous time stochastic volatility models based on discretely sampled observations. The proposed test is constructed by measuring deviations between the empirical and true characteristic functions obtained from the hypothesized stochastic volatility model. In this study, both the test statistics based on the fixed and decreasing sampling schemes are taken into consideration. It is shown that under the null, the proposed tests asymptotically follow a weighted sum of products of centered normal random variables. In order to evaluate the proposed tests, a simulation study is performed, in which a bootstrap method is also considered. Finally, a real data analysis is conducted for illustration.
Keywords: Bootstrap; Empirical characteristic function; Goodness-of-fit; Stochastic volatility models; V-statistics (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X13000079
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:116:y:2013:i:c:p:473-498
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2013.01.006
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().