Radial basis function regularization for linear inverse problems with random noise
Carlos Valencia and
Ming Yuan
Journal of Multivariate Analysis, 2013, vol. 116, issue C, 92-108
Abstract:
In this paper, we study the statistical properties of the method of regularization with radial basis functions in the context of linear inverse problems. Radial basis function regularization is widely used in machine learning because of its demonstrated effectiveness in numerous applications and computational advantages. From a statistical viewpoint, one of the main advantages of radial basis function regularization in general and Gaussian radial basis function regularization in particular is their ability to adapt to varying degrees of smoothness in a direct problem. We show here that similar approaches for inverse problems not only share such adaptivity to the smoothness of the signal but also can accommodate different degrees of ill-posedness. These results render further theoretical support to the superior performance observed empirically for radial basis function regularization.
Keywords: Inverse problem; Minimax rate of convergence; Radial basis function; Regularization (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12002217
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:116:y:2013:i:c:p:92-108
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2012.09.007
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().