EconPapers    
Economics at your fingertips  
 

Strong consistency of k-parameters clustering

María Teresa Gallegos and Gunter Ritter

Journal of Multivariate Analysis, 2013, vol. 117, issue C, 14-31

Abstract: Pollard showed for k-means clustering and a very broad class of sampling distributions that the optimal cluster means converge to the solution of the related population criterion as the size of the data set increases. We extend this consistency result to k-parameters clustering, a method derived from the heteroscedastic, elliptical classification model. It allows a more sensitive data analysis and has the advantage of being affine equivariant. Moreover, the present theory yields a consistent criterion for selecting the number of clusters in such models.

Keywords: Cluster analysis; Classification models; Elliptical models; Maximum likelihood estimation; Strong consistency (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X13000146
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:117:y:2013:i:c:p:14-31

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2013.01.013

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:117:y:2013:i:c:p:14-31