The holonomic gradient method for the distribution function of the largest root of a Wishart matrix
Hiroki Hashiguchi,
Yasuhide Numata,
Nobuki Takayama and
Akimichi Takemura
Journal of Multivariate Analysis, 2013, vol. 117, issue C, 296-312
Abstract:
We apply the holonomic gradient method introduced by Nakayama et al. (2011) [23] to the evaluation of the exact distribution function of the largest root of a Wishart matrix, which involves a hypergeometric function 1F1 of a matrix argument. Numerical evaluation of the hypergeometric function has been one of the longstanding problems in multivariate distribution theory. The holonomic gradient method offers a totally new approach, which is complementary to the infinite series expansion around the origin in terms of zonal polynomials. It allows us to move away from the origin by the use of partial differential equations satisfied by the hypergeometric function. From the numerical viewpoint we show that the method works well up to dimension 10. From the theoretical viewpoint the method offers many challenging problems both to statistics and D-module theory.
Keywords: D-modules; Gröbner basis; Hypergeometric function of a matrix argument; Zonal polynomial (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X13000389
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:117:y:2013:i:c:p:296-312
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2013.03.011
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().