Quadratic inference functions for partially linear single-index models with longitudinal data
Peng Lai,
Gaorong Li and
Heng Lian
Journal of Multivariate Analysis, 2013, vol. 118, issue C, 115-127
Abstract:
In this paper, we consider the partially linear single-index models with longitudinal data. We propose the bias-corrected quadratic inference function (QIF) method to estimate the parameters in the model by accounting for the within-subject correlation. Asymptotic properties for the proposed estimation methods are demonstrated. A generalized likelihood ratio test is established to test the linearity of the nonparametric part. Under the null hypotheses, the test statistic follows asymptotically a χ2 distribution. We also evaluate the finite sample performance of the proposed methods via Monte Carlo simulation studies and a real data analysis.
Keywords: Bias correction; Generalized likelihood ratio; Longitudinal data; Partially linear single-index models; QIF (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X13000468
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:118:y:2013:i:c:p:115-127
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2013.03.019
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().