EconPapers    
Economics at your fingertips  
 

Identity tests for high dimensional data using RMT

Cheng Wang, Jing Yang, Baiqi Miao and Longbing Cao

Journal of Multivariate Analysis, 2013, vol. 118, issue C, 128-137

Abstract: In this work, we redefined two important statistics, the CLRT test [Z. Bai, D. Jiang, J. Yao, S. Zheng, Corrections to LRT on large-dimensional covariance matrix by RMT, The Annals of Statistics 37 (6B) (2009) 3822–3840] and the LW test [O. Ledoit, M. Wolf, Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size, The Annals of Statistics (2002) 1081–1102] on identity tests for high dimensional data using random matrix theories. Compared with existing CLRT and LW tests, the new tests can accommodate data which has unknown means and non-Gaussian distributions. Simulations demonstrate that the new tests have good properties in terms of size and power. What is more, even for Gaussian data, our new tests perform favorably in comparison to existing tests. Finally, we find the CLRT is more sensitive to eigenvalues less than 1 while the LW test has more advantages in relation to detecting eigenvalues larger than 1.

Keywords: High dimensional data; Identity test; Random matrix theory (RMT) (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X13000420
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:118:y:2013:i:c:p:128-137

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2013.03.015

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:118:y:2013:i:c:p:128-137