Densities of nested Archimedean copulas
Marius Hofert and
David Pham
Journal of Multivariate Analysis, 2013, vol. 118, issue C, 37-52
Abstract:
Nested Archimedean copulas recently gained interest since they generalize the well-known class of Archimedean copulas to allow for partial asymmetry. Sampling algorithms and strategies have been well investigated for nested Archimedean copulas. However, for likelihood based inference it is important to have the density. The present work fills this gap. A general formula for the derivatives of the nodes and inner generators appearing in nested Archimedean copulas is developed. This leads to a tractable formula for the density of nested Archimedean copulas in arbitrary dimensions if the number of nesting levels is not too large. Various examples including famous Archimedean families and transformations of such are given. Furthermore, a numerically efficient way to evaluate the log-density is presented.
Keywords: Nested Archimedean copulas; Generator derivatives; Likelihood-based inference (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X1300033X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:118:y:2013:i:c:p:37-52
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2013.03.006
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().