EconPapers    
Economics at your fingertips  
 

The L1 penalized LAD estimator for high dimensional linear regression

Lie Wang

Journal of Multivariate Analysis, 2013, vol. 120, issue C, 135-151

Abstract: In this paper, the high-dimensional sparse linear regression model is considered, where the overall number of variables is larger than the number of observations. We investigate the L1 penalized least absolute deviation method. Different from most of the other methods, the L1 penalized LAD method does not need any knowledge of standard deviation of the noises or any moment assumptions of the noises. Our analysis shows that the method achieves near oracle performance, i.e. with large probability, the L2 norm of the estimation error is of order O(klogp/n). The result is true for a wide range of noise distributions, even for the Cauchy distribution. Numerical results are also presented.

Keywords: High dimensional regression; LAD estimator; L1 penalization; Variable selection (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X1300047X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:120:y:2013:i:c:p:135-151

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2013.04.001

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:120:y:2013:i:c:p:135-151