Kernel estimation of conditional density with truncated, censored and dependent data
Han-Ying Liang and
Ai-Ai Liu
Journal of Multivariate Analysis, 2013, vol. 120, issue C, 40-58
Abstract:
In this paper we define a kernel estimator of the conditional density for a left-truncated and right-censored model based on the generalized product-limit estimator of the conditional distributed function. Under the observations with multivariate covariates form a stationary α-mixing sequence, we derive the asymptotic normality as well as a Berry–Esseen type bound for the proposed estimator. Also, the uniform convergence with rates for the estimator is considered. Finite sample behavior of the estimator is investigated via simulations too.
Keywords: Asymptotic normality; Berry–Esseen type bound; Uniform convergence; Truncated and censored; Conditional density; α-mixing (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X1300095X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:120:y:2013:i:c:p:40-58
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2013.05.009
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().