Kernel density estimation for directional–linear data
Eduardo García-Portugués,
Rosa M. Crujeiras and
Wenceslao González-Manteiga
Journal of Multivariate Analysis, 2013, vol. 121, issue C, 152-175
Abstract:
A nonparametric kernel density estimator for directional–linear data is introduced. The proposal is based on a product kernel accounting for the different nature of both (directional and linear) components of the random vector. Expressions for the bias, variance, and mean integrated square error (MISE) are derived, jointly with an asymptotic normality result for the proposed estimator. For some particular distributions, an explicit formula for the MISE is obtained and compared with its asymptotic version, both for directional and directional–linear kernel density estimators. In this same setting, a closed expression for the bootstrap MISE is also derived.
Keywords: Directional–linear data; Kernel density estimator; Nonparametric statistics (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X13001309
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:121:y:2013:i:c:p:152-175
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2013.06.009
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().