High-dimensional AIC in the growth curve model
Yasunori Fujikoshi,
Rie Enomoto and
Tetsuro Sakurai
Journal of Multivariate Analysis, 2013, vol. 122, issue C, 239-250
Abstract:
The AIC and its modifications have been proposed for selecting the degree in a polynomial growth curve model under a large-sample framework when the sample size n is large, but the dimension p is fixed. In this paper, first we propose a high-dimensional AIC (denoted by HAIC) which is an asymptotic unbiased estimator of the AIC-type risk function defined by the expected log-predictive likelihood or equivalently the Kullback–Leibler information, under a high-dimensional framework such that p/n→c∈[0,1). It is noted that our new criterion gives an estimator with small biases in a wide range of p and n. Next we derive asymptotic distributions of AIC and HAIC under the high-dimensional framework. Through a Monte Carlo simulation, we note that these new approximations are more accurate than the approximations based on a large-sample framework.
Keywords: AIC; HAIC; Asymptotic distributions; High-dimensional criteria; Growth curve model (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X13001383
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:122:y:2013:i:c:p:239-250
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2013.07.006
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().