Partial marginal likelihood estimation for general transformation models
Minggao Gu,
Yueqin Wu and
Bin Huang
Journal of Multivariate Analysis, 2014, vol. 123, issue C, 1-18
Abstract:
We consider a large class of transformation models introduced by Gu et al. (2005) [14]. They proposed an estimation procedure for calculating the maximum partial marginal likelihood estimator (MPMLE) of regression parameters. A big advantage of MPMLE is that it avoids estimating two infinitely dimensional nuisance parameters: baseline and censoring survival functions. And they showed the validity of MPMLE through extensive simulations. In this paper, we establish the asymptotic properties of MPMLE in the general transformation models for either right or left censored data. The difficulty in establishing these asymptotic results comes from the fact that the score function derived from the partial marginal likelihood does not have ordinary independence or martingale structure. We develop a novel discretization method to resolve the difficulty. The estimation procedure is further examined using simulation studies and the analysis of the ACTG019 data.
Keywords: Asymptotic normality; Censored data; Consistency; Discretization method; General transformation model (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X13001772
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:123:y:2014:i:c:p:1-18
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2013.08.016
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().